All Quantum Computing Posts
-
Quantum Computing
Random Circuit Sampling (RCS) Benchmark
At its core, Random Circuit Sampling (RCS) is a way to test how well a quantum computer can generate the output of a complex quantum circuit. Compare the results to what an ideal quantum computer should produce. If the quantum computer’s output closely matches the theoretical expectations, it demonstrates that the system is performing quantum operations correctly.
Read More » -
Quantum Computing
Schrödinger’s Wave Equation
Schrödinger’s equation is essentially the master instruction set for quantum systems – the quantum-world analogue of Newton’s famous F=ma in classical physics. In short, Schrödinger’s equation is to quantum mechanics what Newton’s second law is to classical mechanics: a fundamental law of motion describing how a physical system will change over time. It was formulated in 1925–26 by Erwin Schrödinger, who built on the idea…
Read More » -
Quantum Computing
What’s the Deal with Quantum Computing: Simple Introduction
Quantum computing holds the potential to revolutionize fields where classical computers struggle, particularly in areas involving complex quantum systems, large-scale optimization, and cryptography. The power of quantum computing lies in its ability to leverage the principles of quantum mechanics—superposition and entanglement—to perform certain types of calculations much more efficiently than classical computers.
Read More » -
Quantum Computing
Quantum Parallelism in Quantum Computing: Demystifying the “All-at-Once” Myth
Quantum parallelism is often described in almost mystical terms – exponential computations happening in parallel in the multiverse! – but as we’ve explored, it boils down to the concrete physics of superposition and interference. A quantum computer superposes many states and processes them together, leveraging the wave-like nature of quantum amplitudes to sift out the answer we want. It’s like having an insanely massive parallel…
Read More » -
Quantum Computing
Why Do Quantum Computers Look So Weird?
The intricate giant chandelier of copper tubes, wires, and shielding often leaves people puzzled and curious. This image of a quantum computer is quite striking and unlike any classical computer we've seen before. This unique appearance is not just for show; it's a direct result of the specific technological requirements needed to operate quantum computers, particularly those based on superconducting qubits.
Read More » -
Quantum Computing
Quantum Computing Use Cases
In the early 1900s, when theoretical physicist Max Planck first introduced the idea of quantized energy levels, he probably didn’t foresee his work eventually leading to machines that could solve problems faster than a caffeine-fueled mathematician on a deadline. Legend has it that Planck embarked on his quantum journey after his professor, Munich University physics professor Philipp von Jolly, discouraged him from studying physics, arguing…
Read More » -
Quantum Computing
A Comprehensive Guide to Quantum Gates
In quantum computing, the role of logic gates is played by quantum gates – unitary transformations on one or more qubits. These are the elementary “moves” that a quantum computer can perform on quantum data. Just as classical gates compose to implement arbitrary Boolean functions, quantum gates compose to implement arbitrary unitary operations. However, quantum gates have striking differences from classical ones: they are reversible…
Read More » -
Quantum Computing
Quantum Fourier Transform (QFT)
Quantum Fourier Transform (QFT), like a physical Fourier transform, takes a time-domain wave and represents it in the frequency domain. In the quantum case, the “time-domain” is the computational basis amplitude distribution, and the “frequency-domain” is another basis where the basis states correspond to different phase gradients across the original amplitudes. If the original state has a regular pattern (phase advancing uniformly from one basis…
Read More »