Marin’s Q-Day Prediction Countdown:

Here is my personal Q-Day prediction. For an understanding of the factors I am considering and recent events that are influencing this prediction, please see Marin’s Q-Day Prediction page.

Most Popular Articles This Week

    June 19, 2025

    Q-Day Revisited – RSA-2048 Broken by 2030: Detailed Analysis

    It’s time to mark a controversial date on the calendar: 2030 is the year RSA-2048 will be broken by a…
    April 18, 2025

    What Quantum Computers Can Do Better Than Classical Computers

    Quantum computers already outperform classical computers on a few specialized tasks, and over the coming years that list of tasks…
    January 1, 2024

    Marin’s Statement on AI Risks

    The rapid development of AI brings both extraordinary potential and unprecedented risks. AI systems are increasingly demonstrating emergent behaviors, and…
    August 23, 2024

    Full Stack of AI Concerns: Responsible, Safe, Secure AI

    As AI continues to evolve and integrate deeper into societal frameworks, the strategies for its governance, alignment, and security must…
    November 1, 2021

    Ready for Quantum: Practical Steps for Cybersecurity Teams

    The journey towards quantum resistance is not merely about staying ahead of a theoretical threat but about evolving our cybersecurity…
    November 1, 2023

    Taxonomy of Quantum Computing: Modalities & Architectures

    Over the past few decades, researchers have devised multiple quantum computing paradigms – different models and physical implementations of quantum…
    No posts found.

    Quantum Parallelism in Quantum Computing: Demystifying the “All-at-Once” Myth

    Quantum parallelism is often described in almost mystical terms – exponential computations happening in parallel in the multiverse! – but as we’ve explored, it boils down to the concrete physics of superposition and interference. A quantum computer superposes many states and processes them together, leveraging the wave-like nature of quantum ... Read More

    Introduction to Quantum Random Number Generation (QRNG)

    Cryptographic systems rely on the unpredictability and randomness of numbers to secure data. In cryptography, the strength of encryption keys depends on their unpredictability. Unpredictable and truly random numbers—those that remain secure even against extensive computational resources and are completely unknown to adversaries—are among the most essential elements in cryptography ... Read More

    Introducing Quantum AI

    Quantum Artificial Intelligence (QAI) represents an emerging frontier where quantum computing meets artificial intelligence. This interdisciplinary field explores how quantum algorithms can enhance, accelerate, and expand the capabilities of conventional AI systems. Quantum computing's potential to process complex datasets exponentially faster than classical computers could revolutionize areas like machine learning, ... Read More

    Why Do Quantum Computers Look So Weird?

    The intricate giant chandelier of copper tubes, wires, and shielding often leaves people puzzled and curious. This image of a quantum computer is quite striking and unlike any classical computer we've seen before. This unique appearance is not just for show; it's a direct result of the specific technological requirements ... Read More

    Quantum Computing Use Cases

    In the early 1900s, when theoretical physicist Max Planck first introduced the idea of quantized energy levels, he probably didn’t foresee his work eventually leading to machines that could solve problems faster than a caffeine-fueled mathematician on a deadline. Legend has it that Planck embarked on his quantum journey after ... Read More

    A Comprehensive Guide to Quantum Gates

    In quantum computing, the role of logic gates is played by quantum gates – unitary transformations on one or more qubits. These are the elementary “moves” that a quantum computer can perform on quantum data. Just as classical gates compose to implement arbitrary Boolean functions, quantum gates compose to implement ... Read More

    Shor’s Algorithm: A Quantum Threat to Modern Cryptography

    Shor’s Algorithm is more than just a theoretical curiosity – it’s a wake-up call for the security community. By understanding its principles and implications, we can appreciate why the cryptographic landscape must evolve. The goal of this guide is to equip you with that understanding, without delving into complex mathematics, ... Read More

    Marin Ivezic

    Marin Ivezic I am the Founder of Applied Quantum, a research-driven professional services firm dedicated to helping organizations unlock the transformative power of quantum technologies. Alongside leading its specialized service, Secure Quantum—focused on quantum resilience and post-quantum cryptography—I also invest in cutting-edge quantum ventures through Quantum.Partners. Currently, I’m completing a PhD in Quantum Computing and authoring an upcoming book “Practical Quantum Resistance,”while regularly sharing news and insights on quantum computing and quantum security at PostQuantum.com. More about me.

    Post-Quantum Cryptography (PQC) and Post-Quantum Security Articles

    Quantum Computing Articles

    Quantum Computing Modalities / Architectures / Paradigms

    Quantum Networks Articles

    Quantum AI Articles