Marin’s Q-Day Prediction Countdown:

Here is my personal Q-Day prediction. For an understanding of the factors I am considering and recent events that are influencing this prediction, please see Marin’s Q-Day Prediction page.

Most Popular Articles This Week

    August 23, 2024

    Full Stack of AI Concerns: Responsible, Safe, Secure AI

    As AI continues to evolve and integrate deeper into societal frameworks, the strategies for its governance, alignment, and security must…
    November 1, 2023

    Taxonomy of Quantum Computing: Modalities & Architectures

    Over the past few decades, researchers have devised multiple quantum computing paradigms – different models and physical implementations of quantum…
    April 18, 2025

    What Quantum Computers Can Do Better Than Classical Computers

    Quantum computers already outperform classical computers on a few specialized tasks, and over the coming years that list of tasks…
    June 19, 2025

    Q-Day Revisited – RSA-2048 Broken by 2030: Detailed Analysis

    It’s time to mark a controversial date on the calendar: 2030 is the year RSA-2048 will be broken by a…
    November 1, 2021

    Ready for Quantum: Practical Steps for Cybersecurity Teams

    The journey towards quantum resistance is not merely about staying ahead of a theoretical threat but about evolving our cybersecurity…
    January 1, 2024

    Marin’s Statement on AI Risks

    The rapid development of AI brings both extraordinary potential and unprecedented risks. AI systems are increasingly demonstrating emergent behaviors, and…

    Microsoft Unveils New 4D Quantum Error-Correcting Codes

    Microsoft Quantum's researchers have introduced a new family of four-dimensional (4D) geometric quantum error-correcting codes that promise to dramatically outperform today’s standard 2D surface codes. Revealed in a new preprint "A Topologically Fault-Tolerant Quantum Computer with Four Dimensional Geometric Codes" (arXiv:2506.15130v1) and an accompanying Microsoft blog post, these novel 4D ... Read More

    IonQ’s 2025 Roadmap: Toward a Cryptographically Relevant Quantum Computer by 2028

    IonQ has unveiled an accelerated quantum computing roadmap that, if realized, could deliver a cryptographically relevant quantum computer (CRQC) as early as 2028. In a June 2025 announcement, the Maryland-based quantum startup – known for its trapped-ion technology – outlined dramatic scaling milestones enabled by recent acquisitions and technical breakthroughs ... Read More

    IBM’s Roadmap to Large-Scale Fault-Tolerant Quantum Computing (FTQC) by 2029 – News & Analysis

    June 10 2025 IBM made a landmark announcement outlining a clear path to build the world’s first large-scale, fault-tolerant quantum computer by the year 2029. Codenamed IBM Quantum “Starling,” this planned system will leverage a new scalable architecture to achieve on the order of 200 logical (error-corrected) qubits capable of ... Read More

    Oxford Achieves 10⁻⁷-Level Qubit Gate Error, Shattering Quantum Fidelity Records

    Physicists at the University of Oxford have set a new world record for quantum logic accuracy, achieving single-qubit gate error rates below 10^-7 – meaning fidelities exceeding 99.99999%. The breakthrough, reported in a study published in Physical Review Letters in June 2025 marks the lowest error ever recorded for any ... Read More

    A Reality Check on Forbes’ “20 Real-World Quantum Computing Applications”

    A few of Forbes’s examples are genuinely promising; several smash together disparate ideas without noting the engineering road‑map; and some miss key caveats that separate “demo‑ready” from “production‑ready.” The authors could have done a sharper job sorting mature use cases (think quantum key distribution) from long shots (say, universal quantum ... Read More

    Trump’s New Cybersecurity Order – What Changed and Why It Matters – Quantum Perspective

    A New Executive Order Reshapes Cybersecurity Policy: On June 6, 2025, President Donald J. Trump signed a sweeping Executive Order titled “Sustaining Select Efforts to Strengthen the Nation’s Cybersecurity”, which explicitly amends two earlier orders: Obama-era Executive Order 13694 (2015) and the outgoing Biden administration’s Executive Order 14144 (January 16, ... Read More

    Quantum Breakthrough Slashes Qubit Needs for RSA-2048 Factoring

    A new research preprint by Google Quantum AI scientist Craig Gidney has dramatically lowered the estimated resources needed to break RSA-2048 encryption using a quantum computer. Gidney’s May 2025 paper, “How to factor 2048 bit RSA integers with less than a million noisy qubits,” argues that a fault-tolerant quantum computer ... Read More

    D-Wave Claims Quantum Supremacy with Quantum Annealing

    D-Wave Quantum Inc. has announced a breakthrough, claiming to achieve quantum computational advantage – even “quantum supremacy” – using its quantum annealing technology on a practical problem. In a peer-reviewed study published in Science on March 12, 2025, D-Wave’s researchers report that their 5,000+ qubit Advantage2 prototype quantum annealer outperformed ... Read More
    Loading...

    Q-Day Revisited – RSA-2048 Broken by 2030: Detailed Analysis

    It’s time to mark a controversial date on the calendar: 2030 is the year RSA-2048 will be broken by a quantum computer. That’s my bold prediction, and I don’t make it lightly. In cybersecurity circles, the countdown to “Q-Day” or Y2Q (the day a cryptographically relevant quantum computer cracks our ... Read More

    Global Quantum Innovation Ecosystems: Lessons for TTOs from Around the World

    For universities and tech transfer offices (TTOs), understanding global diverse quantum innovation ecosystems is more than a matter of curiosity – it’s a practical guide for positioning academic spin‑offs for success on the world stage. Government investment is a key differentiator: by 2025, governments worldwide have committed over $40 billion in ... Read More

    The Enormous Energy Cost of Breaking RSA‑2048 with Quantum Computers

    The energy requirements for breaking RSA-2048 with a quantum computer underscore how different the post-quantum threat is from conventional hacking. It’s not just about qubits and math; it’s about megawatts, cooling systems, and power grids. Today, that reality means only the most potent actors would even contemplate such attacks, and ... Read More

    Building the Quantum Workforce: Talent Challenges and Opportunities

    Amid quantum revolution, a bottleneck has emerged: a lack of skilled people. In fact, the quantum talent shortage is now seen as one of the primary hurdles to translating lab discoveries into real-world innovations. One industry expert even warned that developing a “quantum-literate workforce” will be a key factor in ... Read More

    The Many Faces of Decoherence

    Quantum computers hold enormous promise, but they face a stubborn adversary: decoherence. This is the process by which a qubit’s fragile quantum state (its superposition or entanglement) leaks into the environment and effectively "forgets" the information it was carrying. For today’s leading quantum hardware modalities – superconducting circuits, trapped-ion qubits, ... Read More

    What Quantum Computers Can Do Better Than Classical Computers

    Quantum computers already outperform classical computers on a few specialized tasks, and over the coming years that list of tasks will grow. They excel at problems where superposition and entanglement let them explore a vast landscape of possibilities in parallel and use interference to extract an answer – factoring numbers, ... Read More

    The Rise of Logical Qubits: How Quantum Computers Fight Errors

    Logical qubits are the linchpin for delivering on the promise of quantum computing. They are the qubits as we wish we had them – long-lived and trustworthy – brought to life by the ingenuity of quantum error correction. By encoding information across many imperfect qubits, scientists have shown they can ... Read More

    Marin Ivezic

    Marin Ivezic I am the Founder of Applied Quantum, a research-driven professional services firm dedicated to helping organizations unlock the transformative power of quantum technologies. Alongside leading its specialized service, Secure Quantum—focused on quantum resilience and post-quantum cryptography—I also invest in cutting-edge quantum ventures through Quantum.Partners. Currently, I’m completing a PhD in Quantum Computing and authoring an upcoming book “Practical Quantum Resistance,”while regularly sharing news and insights on quantum computing and quantum security at PostQuantum.com. More about me.

    Post-Quantum Cryptography (PQC) and Post-Quantum Security Articles

    Quantum Computing Articles

    Quantum Computing Modalities / Architectures / Paradigms

    Quantum Networks Articles

    Quantum AI Articles