All Q-Day, Y2Q Posts
-
Post-Quantum
Breaking RSA Encryption: Quantum Hype Meets Reality (2022-2025)
To put it plainly, if you encrypted a message with an RSA-2048 public key today, no one on Earth knows how to factor it with currently available technology, even if they threw every quantum computer and supercomputer we have at the task. That may change in the future – perhaps in a decade or even less if quantum tech continues its exponential development. Or perhaps…
Read More » -
Post-Quantum
Post-Quantum Cryptography (PQC) Standardization – 2025 Update
Post-quantum cryptography (PQC) is here - not in theory, but in practice. We have concrete algorithms, with standards guiding their implementation. They will replace our decades-old cryptographic infrastructure piece by piece over the next decade. For tech professionals, now is the time to get comfortable with lattices and new key sizes, to update libraries and protocols, and to ensure crypto agility in systems. The transition…
Read More » -
Post-Quantum
NIST PQC Security Strength Categories (1–5) Explained
As part of its post-quantum cryptography (PQC) standardization, NIST introduced five security strength categories (often labeled Levels 1-5) to classify the robustness of candidate algorithms. Each category represents a minimum security level that a PQC algorithm’s cryptanalysis should require, defined by comparison to a well-understood "reference" problem in classical cryptography. In simpler terms, NIST set floors for security: if a PQC scheme claims to meet…
Read More » -
Post-Quantum
4,099 Qubits: The Myth and Reality of Breaking RSA-2048 with Quantum Computers
4,099 is the widely cited number of quantum bits one would need to factor a 2048-bit RSA key using Shor’s algorithm – in other words, the notional threshold at which a quantum computer could crack one of today’s most common encryption standards. The claim has an alluring simplicity: if we could just build a quantum machine with a few thousand perfect qubits, decades of RSA-protected…
Read More » -
Q-Day
What Will Really Happen Once Q-Day Arrives – When Our Current Cryptography Is Broken?
As the world edges closer to the era of powerful quantum computers, experts warn of an approaching “Q-Day” (sometimes called Y2Q or the Quantum Apocalypse): the day a cryptographically relevant quantum computer can break our current encryption. Unlike the Y2K bug—which had a fixed deadline and was mostly defused before the clock struck midnight—Q-Day won’t announce itself with a clear date or time. We won’t…
Read More » -
Q-Day
Q-Day Predictions: Anticipating the Arrival of CRQC
While CRQCs capable of breaking current public key encryption algorithms have not yet materialized, technological advancements are pushing us towards what is ominously dubbed 'Q-Day'—the day a CRQC becomes operational. Many experts believe that Q-Day, or Y2Q as it's sometimes called, is just around the corner, suggesting it could occur by 2030 or even sooner; some speculate it may already exist within secret government laboratories.
Read More » -
Post-Quantum
Harvest Now, Decrypt Later (HNDL) Risk
"Harvest Now, Decrypt Later" (HNDL), also known as "Store Now, Decrypt Later" (SNDL), is a concerning risk where adversaries collect encrypted data with the intent to decrypt it once quantum computing becomes capable of breaking current encryption methods. This is the quantum computing's ticking time bomb, with potential implications for every encrypted byte of data currently considered secure.
Read More » -
Post-Quantum
Cryptographically Relevant Quantum Computers (CRQCs)
Cryptographically Relevant Quantum Computers (CRQCs) represent a seismic shift on the horizon of cybersecurity. In this article, we’ve seen that CRQCs are defined by their ability to execute quantum algorithms (like Shor’s and Grover’s) at a scale that breaks the cryptographic primitives we rely on daily. While still likely years (if not a decade or more) away, their eventual arrival is not a question of…
Read More »