All AI Security & AI Safety Posts
-
AI Security
AI Security 101
Artificial Intelligence (AI) is no longer just a buzzword; it’s an integral part of our daily lives, powering everything from our search for a perfect meme to critical infrastructure. But as Spider-Man’s Uncle Ben wisely said, “With great power comes great responsibility.” The power of AI is undeniable, but if not secured properly, it could end up making every meme a Chuck Norris meme. Imagine…
Read More » -
Leadership
Why We Seriously Need a Chief AI Security Officer (CAISO)
With AI’s breakneck expansion, the distinctions between ‘cybersecurity’ and ‘AI security’ are becoming increasingly pronounced. While both disciplines aim to safeguard digital assets, their focus and the challenges they address diverge in significant ways. Traditional cybersecurity is primarily about defending digital infrastructures from external threats, breaches, and unauthorized access. On the other hand, AI security has to address unique challenges posed by artificial intelligence systems,…
Read More » -
AI Security
How to Defend Neural Networks from Trojan Attacks
Neural networks learn from data. They are trained on large datasets to recognize patterns or make decisions. A Trojan attack in a neural network typically involves injecting malicious data into this training dataset. This 'poisoned' data is crafted in such a way that the neural network begins to associate it with a certain output, creating a hidden vulnerability. When activated, this vulnerability can cause the…
Read More » -
AI Security
Model Fragmentation and What it Means for Security
Model fragmentation is the phenomenon where a single machine-learning model is not used uniformly across all instances, platforms, or applications. Instead, different versions, configurations, or subsets of the model are deployed based on specific needs, constraints, or local optimizations. This can result in multiple fragmented instances of the original model operating in parallel, each potentially having different performance characteristics, data sensitivities, and security vulnerabilities.
Read More » -
AI Security
Outsmarting AI with Model Evasion
Model Evasion in the context of machine learning for cybersecurity refers to the tactical manipulation of input data, algorithmic processes, or outputs to mislead or subvert the intended operations of a machine learning model. In mathematical terms, evasion can be considered an optimization problem, where the objective is to minimize or maximize a certain loss function without altering the essential characteristics of the input data.…
Read More » -
AI Security
Securing Machine Learning Workflows through Homomorphic Encryption
Homomorphic Encryption has transitioned from being a mathematical curiosity to a linchpin in fortifying machine learning workflows against data vulnerabilities. Its complex nature notwithstanding, the unparalleled privacy and security benefits it offers are compelling enough to warrant its growing ubiquity. As machine learning integrates increasingly with sensitive sectors like healthcare, finance, and national security, the imperative for employing encryption techniques that are both potent and…
Read More » -
AI Security
Understanding Data Poisoning: How It Compromises Machine Learning Models
Data poisoning is a targeted form of attack wherein an adversary deliberately manipulates the training data to compromise the efficacy of machine learning models. The training phase of a machine learning model is particularly vulnerable to this type of attack because most algorithms are designed to fit their parameters as closely as possible to the training data. An attacker with sufficient knowledge of the dataset…
Read More » -
AI Security
Semantic Adversarial Attacks: When Meaning Gets Twisted
Semantic adversarial attacks represent a specialized form of adversarial manipulation where the attacker focuses not on random or arbitrary alterations to the data but specifically on twisting the semantic meaning or context behind it. Unlike traditional adversarial attacks that often aim to add noise or make pixel-level changes to deceive machine learning models, semantic attacks target the inherent understanding of the data. For example, instead…
Read More »