Quantum Computing Modalities
PostQuantum.com by Marin Ivezic – Quantum Computing Modalities and Architectures
-
Quantum Computing Modalities: Hybrid QC Architectures
Hybrid quantum computing architectures refer to combining different types of quantum systems or integrating quantum subsystems with one another (and often with classical systems) to create a more powerful or versatile computer. This can mean hybridizing physical qubit modalities (e.g., using both superconducting qubits and photonic qubits together), or mixing analog and digital quantum methods, or even quantum-classical hybrids where a quantum processor works in tandem with a classical co-processor.
Read More » -
Quantum Computing Modalities: Quantum Low-Density Parity-Check (LDPC) & Cluster States
Quantum Low-Density Parity-Check (LDPC) codes are a class of quantum error-correcting codes characterized by “sparse” parity-check constraints, analogous to classical LDPC codes. In a Quantum LDPC code (which is typically a stabilizer code), each stabilizer generator (parity-check operator) acts on only a small, fixed number of physical qubits, and each qubit participates in only a few such checks.
Read More » -
Quantum Computing Modalities: Gate-Based / Universal QC
Quantum computing in the gate-based or circuit model is the most widely pursued paradigm for realizing a universal quantum computer. In this model, computations are carried out by applying sequences of quantum logic gates to qubits (quantum bits), analogous to how classical computers use circuits of logic gates on bits. A gate-model quantum computer leverages uniquely quantum phenomena – superposition, entanglement, and interference – to explore a vast computational space…
Read More » -
Quantum Computing Modalities: Quantum Annealing (QA) & Adiabatic QC (AQC)
Quantum annealing (QA) and adiabatic quantum computing (AQC) are closely related paradigms that use gradual quantum evolution to solve problems. In both approaches, a problem is encoded into a landscape of energy states (a quantum Hamiltonian), and the system is guided to its lowest-energy state which corresponds to the optimal solution.
Read More » -
Quantum Computing Modalities: Quantum Cellular Automata (QCA) in Living Cells
Trapped-ion quantum computing uses individual ions (charged atoms) as qubits. Each ion’s internal quantum state (usually two hyperfine levels of the atom’s electron configuration) serves as |0⟩ and |1⟩. Ions are held in place (suspended in free space) using electromagnetic traps – typically a linear Paul trap that confines ions in a line using oscillating electric fields. By using lasers or microwaves to interact with the ions, quantum gates can…
Read More »