Quantum Computing
PostQuantum.com by Marin Ivezic – Quantum Computing, Quantum Technologies, Post-Quantum
-
Why Do Quantum Computers Look So Weird?
The intricate giant chandelier of copper tubes, wires, and shielding often leaves people puzzled and curious. This image of a quantum computer is quite striking and unlike any classical computer we've seen before. This unique appearance is not just for show; it's a direct result of the specific technological requirements…
Read More » -
Quantum Computing Use Cases
In the early 1900s, when theoretical physicist Max Planck first introduced the idea of quantized energy levels, he probably didn’t foresee his work eventually leading to machines that could solve problems faster than a caffeine-fueled mathematician on a deadline. Legend has it that Planck embarked on his quantum journey after…
Read More » -
A Comprehensive Guide to Quantum Gates
In quantum computing, the role of logic gates is played by quantum gates – unitary transformations on one or more qubits. These are the elementary “moves” that a quantum computer can perform on quantum data. Just as classical gates compose to implement arbitrary Boolean functions, quantum gates compose to implement…
Read More » -
Quantum Fourier Transform (QFT)
Quantum Fourier Transform (QFT), like a physical Fourier transform, takes a time-domain wave and represents it in the frequency domain. In the quantum case, the “time-domain” is the computational basis amplitude distribution, and the “frequency-domain” is another basis where the basis states correspond to different phase gradients across the original…
Read More » -
Hadamard Gate: The Gateway to Superposition
The Hadamard gate takes a qubit and puts it into an equal superposition of “0” and “1” (with a relative phase of + or -). It has a simple matrix but a profound impact: it enables parallelism and interference in quantum algorithms. Historically rooted in Hadamard matrices from mathematics, it…
Read More » -
Quantum Superposition: How Qubits Live in Many States at Once
Quantum computing promises to solve problems that stump even the fastest classical supercomputers. At the heart of this promise is a mind-bending phenomenon: quantum superposition. In simple terms, superposition allows quantum bits—or qubits—to occupy multiple states at the same time, unlike ordinary bits which are firmly either 0 or 1.…
Read More » -
Colliding Waves: How Quantum Interference Powers Quantum Computing
Quantum interference remains the cornerstone of quantum computing’s promise. It’s the feature that distinguishes quantum computation from just a random quantum jumble. A quantum computer is not powerful simply because it can have many states at once – if that were all, measuring would give a random one and it…
Read More » -
Understanding “Polynomial Time” – Why Faster Algorithms Matter
Quantum computing has emerged as a new frontier of great-power competition in the 21st century. Nations around the world view advanced quantum technologies as strategic assets—keys to future economic prowess, military strength, and technological sovereignty. Governments have already poured over $40 billion into quantum research and development globally, launching national…
Read More » -
Key Principles and Theorems in Quantum Computing and Networks
The landscape of quantum computing and quantum networks is an exciting frontier where physics and cybersecurity intersect. We’re witnessing the early days of this quantum revolution. As quantum hardware scales and quantum protocols move from labs to real-world deployment, security experts will need to collaborate with physicists like never before.…
Read More » -
Qubits: A Brief Introduction for Cybersecurity Professionals
A qubit is the quantum analog of a classical bit – it’s the basic unit of quantum information. However, unlike a classical bit that can only be 0 or 1 at any given time, a qubit can exist in a combination of both 0 and 1 states simultaneously. This property…
Read More » -
Bell States: An Introduction for Cybersecurity Professionals
Bell states are a set of four specific quantum states of two qubits (quantum bits) that are entangled. In simple terms, an entangled pair of qubits behaves as one system, no matter how far apart they are. Bell states are the simplest and most extreme examples of this phenomenon. They…
Read More » -
Balancing Quantum Computing Hype and Hope
Quantum computing stands at the intersection of immense promise and intense hype. As someone who had led cybersecurity teams (including serving as an interim CISO for Fortune 500 companies) and was now investing in a quantum computing startup, I found myself navigating two contrasting narratives. On one hand, I am…
Read More » -
Why I Chose Photonic Quantum Computing
Choosing photonic quantum computing for my startup is equal parts ambition and pragmatism. The ambition is that photons, with their long coherence and networking talent, could unlock scalable quantum computers without the cryogenic baggage of other approaches. The pragmatism was that by immersing myself in this cutting-edge field, I could…
Read More » -
Quantum Computers Intro
I remember the first time I heard the phrase “quantum computer” about a ten years ago. I pictured something out of a sci-fi movie - maybe a glowing box humming with mystical power. As a techie who spends a lot of time worrying about encryption and security, my skeptical eyebrow…
Read More » -
Quantum Computing Hardware Update
In summary, as 2006 ends I remain confident yet realistic. We’ve seen genuine, hard-won progress in quantum hardware: superconducting circuits entangling, ions scaling up with superb control, photons performing logic, and even completely different technologies proving their quantum chops. We’ve also seen that each platform has serious challenges to overcome…
Read More »