Post-Quantum
PostQuantum.com by Marin Ivezic – Quantum Security, PQC, Quantum Resistance, CRQC, Q-Day, Y2Q
-
Telecom’s Quantum‑Safe Imperative: Challenges in Adopting Post‑Quantum Cryptography
The race is on to quantum‑proof the world’s telecom networks. With cryptographically relevant quantum computers (CRQC) projected to arrive by the 2030s, global communications providers face an urgent mandate to upgrade their security foundations. Today’s mobile and fixed‑line networks rely on public-key cryptography that quantum algorithms could eventually break. In…
Read More » -
Quantum Computing Risks to Cryptocurrencies – Bitcoin, Ethereum, and Beyond
Cryptocurrencies like Bitcoin and Ethereum derive their security from cryptographic algorithms – mathematical puzzles that are practically impossible for classical computers to solve in any reasonable time. However, the emergence of quantum computing threatens this security assumption. Unlike classical machines, quantum computers leverage quantum mechanics to perform certain computations exponentially…
Read More » -
What Will Really Happen Once Q-Day Arrives – When Our Current Cryptography Is Broken?
As the world edges closer to the era of powerful quantum computers, experts warn of an approaching “Q-Day” (sometimes called Y2Q or the Quantum Apocalypse): the day a cryptographically relevant quantum computer can break our current encryption. Unlike the Y2K bug—which had a fixed deadline and was mostly defused before…
Read More » -
Q-Day Predictions: Anticipating the Arrival of CRQC
While CRQCs capable of breaking current public key encryption algorithms have not yet materialized, technological advancements are pushing us towards what is ominously dubbed 'Q-Day'—the day a CRQC becomes operational. Many experts believe that Q-Day, or Y2Q as it's sometimes called, is just around the corner, suggesting it could occur…
Read More » -
Quantum Readiness for Mission-Critical Communications (MCC)
Mission-critical communications (MCC) networks are the specialized communication systems used by “blue light” emergency and disaster response services (police, fire, EMS), military units, utilities, and other critical operators to relay vital information when lives or infrastructure are at stake. These networks prioritize reliability, availability, and resilience – they must remain…
Read More » -
Harvest Now, Decrypt Later (HNDL) Risk
"Harvest Now, Decrypt Later" (HNDL), also known as "Store Now, Decrypt Later" (SNDL), is a concerning risk where adversaries collect encrypted data with the intent to decrypt it once quantum computing becomes capable of breaking current encryption methods. This is the quantum computing's ticking time bomb, with potential implications for…
Read More » -
Post-Quantum Cryptography PQC Challenges
The transition to post-quantum cryptography is a complex, multi-faceted process that requires careful planning, significant investment, and a proactive, adaptable approach. By addressing these challenges head-on and preparing for the dynamic cryptographic landscape of the future, organizations can achieve crypto-agility and secure their digital assets against the emerging quantum threat.
Read More » -
Quantum Era Demands Changes to ALL Enterprise Systems
In my work with various clients, I frequently encounter a significant misunderstanding about the scope of preparations required to become quantum ready. Many assume that the transition to a post-quantum world will be straightforward, involving only minor patches to a few systems or simple upgrades to hardware security modules (HSMs).…
Read More » -
Inside NIST’s PQC: Kyber, Dilithium, and SPHINCS+
In 2022, after a multi-year evaluation, NIST selected CRYSTALS-Kyber, CRYSTALS-Dilithium, and SPHINCS+ as the first algorithms for standardization in public-key encryption (key encapsulation) and digital signatures. Kyber is an encryption/key-establishment scheme (a Key Encapsulation Mechanism, KEM) based on lattice problems, while Dilithium (also lattice-based) and SPHINCS+ (hash-based) are digital signature…
Read More » -
The Future of Digital Signatures in a Post-Quantum World
The world of digital signatures is at an inflection point. We’re moving from the familiar terrain of RSA and ECC into the new territory of lattices and hashes. It’s an exciting time for cryptography, and a critical time for security practitioners. Authentication, integrity, and non-repudiation are security properties we must…
Read More » -
Cryptographically Relevant Quantum Computers (CRQCs)
Cryptographically Relevant Quantum Computers (CRQCs) represent a seismic shift on the horizon of cybersecurity. In this article, we’ve seen that CRQCs are defined by their ability to execute quantum algorithms (like Shor’s and Grover’s) at a scale that breaks the cryptographic primitives we rely on daily. While still likely years…
Read More » -
Quantum Computer Factors Record 48-Bit Number – How Far Are We from Cracking RSA-2048?
Factoring a 2048-bit number is in a different universe of complexity, requiring thousands of high-quality qubits and billions of operations – a capability that will likely require years of additional scientific and engineering breakthroughs. The current milestone, while remarkable for quantum computing, does not change the security status of RSA…
Read More » -
The Toffoli Gate: The Unsung Workhorse in Quantum Codebreaking
Understanding the Toffoli gate’s role isn’t just an academic exercise – it has real implications for when and how quantum computers might break our cryptography. Each Toffoli gate isn’t a single physical operation on today’s hardware; it has to be decomposed into the basic operations a quantum machine can do…
Read More » -
Mitigating Quantum Threats Beyond PQC
The article explores limitations of PQC and explores alternative and complementary approaches to mitigate quantum risks. It provides technical analysis of each strategy, real-world examples of their deployment, and strategic recommendations for decision-makers. The goal is to illuminate why a diversified cryptographic defense – beyond just rolling out new algorithms…
Read More » -
Introduction to Crypto-Agility
As we edge closer to the Q-Day—the anticipated moment when quantum computers will be capable of breaking traditional cryptographic systems—the need for crypto-agility becomes increasingly critical. Crypto-agility is the capability of an organization to swiftly and efficiently transition between different cryptographic algorithms and protocols in response to emerging threats and…
Read More »